Abstract

Aeroelastic phenomena in turbomachinery are one of the most challenging problems to model using computational fluid dynamics (CFD) due to their inherent nonlinear nature, the difficulties in simulating fluid–structure interactions and the considerable computational requirements. Nonetheless, accurate modelling of self-sustained flow-induced vibrations, known as flutter, has proved to be crucial in assessing stability boundaries and extending the operative life of turbomachinery. Flutter avoidance and control is becoming more relevant in compressors and fans due to a well-established trend towards lightweight and thinner designs that enhance aerodynamic efficiency. In this paper, an overview of computational techniques adopted over the years is first presented. The principal methods for flutter modelling are then reviewed; a classification is made to distinguish between classical methods, where the fluid flow does not interact with the structure, and coupled methods, where this interaction is modelled. The most used coupling algorithms along with their benefits and drawbacks are then described. Finally, an insight is presented on model order reduction techniques applied to structure and aerodynamic calculations in turbomachinery flutter simulations, with the aim of reducing computational cost and permitting treatment of complex phenomena in a reasonable time.

Highlights

  • Aeroelasticity has been defined by Collar [1] as the study of mutual interactions that take place within the triangle formed by inertial, elastic and aerodynamic forces acting on structural elements exposed to airflows

  • One of the key concepts in turbomachinery aeroelasticity, introduced by Lane [18], is the interblade phase angle (IBPA): the individual blades in a cascade are assumed to vibrate with the same amplitude and mode shape, but the maximum is reached with a constant phase lag, known as IBPA

  • This review of computational approaches to predict flutter in turbomachinery showed that many different techniques were adopted throughout the years, spanning a wide range of complexity levels and computational costs

Read more

Summary

Introduction

Aeroelasticity has been defined by Collar [1] as the study of mutual interactions that take place within the triangle formed by inertial, elastic and aerodynamic forces acting on structural elements exposed to airflows. Aeroelasticity problems involving turbomachinery are of paramount importance in their design, analysis and testing because forces induced on blades by the airflow can induce excessive deflections and vibrations, affecting nominal performances, reducing the life of components, limiting the operational range or even leading to catastrophic failures. Static aeroelasticity deals with the determination of the generic running or hot blade shape, i.e., the one elastically deformed under aerodynamic loads and centrifugal stresses. The engineering problem in static aeroelasticity is to account for loads and displacements in nominal conditions and manufacture a “cold” (i.e., unloaded) shape which eventually deforms into the “hot” (i.e., loaded) designed one. Static deflections leading to critical plastic deformations and catastrophic failures are not usually an issue in turbomachinery

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.