Abstract

The nano-to-micro mesoscale is crucial for cementitious materials; here reactions and interactions between molecules produce complex mechanisms that determine the behavior of cement minerals, especially C-S-H. This manuscript reviews the current state of the art in coarse-grained and mesoscale simulations of C-S-H. These simulations leverage a rigorous statistical mechanical framework, linking atomistic description with coarse-grained modelling through several pivotal concepts: potential of mean force, ion-ion correlations between charged surfaces, and grand canonical reactive ensemble. The second part of the manuscript discusses the effective interaction potentials between C-S-H particles that are currently used, followed by methods to simulate C-S-H formation. Structural, physical and mechanical properties predicted by the existing simulations are then presented. Finally the manuscript highlights opportunities for future research, which are driving the multi-scale modelling of C-S-H but also of other mesostructured materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call