Abstract

Ankle sprains are exceedingly common injuries in both athletes and the general population. They account for 10 to 30% of all sports injuries. Although the vast majority of lateral ankle ligament injuries respond successfully to conservative management, the absolute number of those that progress to chronic lateral ankle instability (CLAI) remains considerably important. This condition is characterized by persistent symptoms and may be associated with short-term and long-term complications and functional deficits. There is still a lack of ideal postoperative management of CLAI patients. Furthermore, an evidence-based rehabilitation phasing does not exist and most of the published studies regarding this subject suggest some protocols based on a wide variety of functional assessment scores and other modalities that are not accurate enough. Moreover, the literature that assesses the ability to return to work (RTW) and return to sport (RTS) in the general population and athletes operated for CLAI most commonly shows aggregated results with global rates of RTW or RTS without describing a detailed timeline based on the readiness of patients to return to each level of activity. Although stress radiographs and MRI have been assessed as potential tools to improve postoperative management of CLAI patients, the first modality is limited by its low sensitivity to detect laxity and the second one by its static character and its inability to predict neither the healing process phase nor the mechanical properties of the repaired/reconstructed ligaments. Bioelectrical impedance, mechanical impedance and near-infrared spectroscopy are non-invasive methods of measurement that could be potential assessment tools to help surgeons improve the postoperative management of patients after CLAI surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call