Abstract

Abstract This paper reviews sensors with nano- and microscale dimensions used for diverse biological applications. A biosensor converts biological responses into electrical signals. In recent years, there have been significant advancements in the design and development of biosensors that generated a large spectrum of biosensor applications including healthcare, disease diagnosis, drug delivery, environmental monitoring, and water and food quality monitoring. There has been significant work to enhance the performance of biosensors by improving sensitivity, reproducibility, and sensor response time. However, a key challenge of these technologies is their ability to efficiently capture and transform biological signals into electric, optic, gravimetric, electrochemical, or acoustic signals. This review summarizes the working principle of a variety of biosensors in terms of their classification, design considerations, and diverse applications. Other lines of research highlighted in this paper are focused on the miniaturization of biosensing devices with micro and nano-fabrication technologies, and the use of nanomaterials in biosensing. Recently wearable sensors have had important applications such as monitoring patients with chronic conditions in home and community settings. This review paper mentions applications of wearable technology. Machine learning is shown to help discover new knowledge in the field of medical applications. We also review artificial intelligence (AI) and machine learning (ML)-based applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.