Abstract

Zinc–air batteries are promising candidates as stationary power sources because of their high specific energy density, high volumetric energy density, environmental friendliness, and low cost. The oxygen-related reactions at the air electrode are kinetically slow; thus, the air electrode integrated with an oxygen electrocatalyst is the most critical component, and inevitably determines the performance of a Zn–air battery. The aim of this paper was to document progress in researching bifunctional catalysts for Zn–air batteries. The catalysts are divided into several categories: noble metal, metal nanoparticle (single and bimetallic), multicomponent nanoparticle, metal chalcogenide, metal oxide, layered double hydroxide, and non-metal materials. Finally, the battery performance is compared and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call