Abstract

During the past decades, a significant amount of excellent scientific results has been generated in the field of polymer electrolyte membrane water electrolysis (PEMWE). Compared to current state-of-the-art technologies, PEMWE offers the opportunity to produce green hydrogen with zero carbon emissions. However, the membrane electrode assembly (MEA), whose price is still high for a rather limited lifetime, needs further improvement in terms of performance, cost, and durability. In order to efficiently process novel materials, accelerated stress tests (ASTs) can be implemented to provoke and investigate cell ageing processes and assess failure modes under real-life conditions. In this review, the different accelerated stressors of the main components of the MEA are discussed, and recent publications of ASTs in the study of PEMWE cell durability are summarized. Furthermore, a concise review of the degradation mechanisms for the individual MEA components depicted in recent publications is presented. The different aspects identified in this review serve as a roadmap to further advance the durability of novel stack materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.