Abstract
Compliant and soft sensors that detect machinal deformations become prevalent in emerging soft robots for closed-loop feedback control. In contrast to conventional sensing applications, the stretchy body of the soft robot enables programmable actuating behaviors and automated manipulations across a wide strain range, which poses high requirements for the integrated sensors of customized sensor characteristics, high-throughput data processing, and timely decision-making. As various soft robotic sensors (strain, pressure, shear, etc.) meet similar challenges, in this perspective, we choose strain sensor as a representative example and summarize the latest advancement of strain sensor-integrated soft robotic design driven by machine learning techniques, including sensor materials optimization, sensor signal analyses, and in-sensor computing. These machine learning implementations greatly accelerate robot automation, reduce resource consumption, and expand the working scenarios of soft robots. We also discuss the prospects of fusing machine learning and soft sensing technology for creating next-generation intelligent soft robots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.