Abstract
A review of the mathematical and physical aspects of the Ermakov systems is presented. The main properties of Lie algebra invariants are extensively used. The two and tridimensional Ermakov systems are fully analyzed and the correspondent invariants found. Then, we go over quantization with special emphasis in the two dimensional case. An application to Nonlinear Optics is hereby developed. We also treat the so-called “one dimensional” case, which is easily solved in the classical case but offers special interest in the quantum realm, where one can find exactly the Feynman propagator. We finish with the stationary phase approximation which contains also some interesting features when compared with the exact solution. Some prospects for future research are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.