Abstract

This review aims to offer a vision of the clinical reality of cell therapy today in intensive medicine. For this, it has been carried out a description of the properties, functions, and Mesenchymal Stem Cells (MSCS) sources to subsequently address the evidence in preclinical models and studies clinical trials with whole cells and models attributed to small extracellular vesicles (sEVs), nanoparticles made up of microvesicles secreted by cells with an effect on the extracellular matrix, and their impact as an alternative towards cell-free regenerative medicine. MSCs are cells that enhance the regenerative capacity which can be differentiated typically in different lineages committed as bone, cartilage, and adipose tissue. On the other hand, small extracellular vesicles are structures that participate notoriously and crucially in intercellular communication, which has led to a change in the concept of the functions and the role that these vesicles play in living organisms, in the restoration of damaged tissues and the inflammatory response and immunological. We present the mechanisms that are involved in the applications of MSCS as whole cells and their sEVs in cell therapy and cell-free therapy as an alternative in regenerative medicine. Considering the structural loss that occurs after surgical procedures for cystic and tumoral pathology in periodontitis, as well as the maxillary atrophy that determines the rehabilitation with dental implants, it is imperative to find satisfactory solutions. The opportunity provided by the findings in stem cells is a recent introduction in the field of oral surgery, based on the regenerative potential that these cells possess to restore defects at different levels of the oral cavity. This review aims to discover the real applications that stem cells may have in our treatments shortly.

Highlights

  • Cell therapy and regenerative medicine have generated a great research boom thanks to new knowledge about stem cells and their potential outlining them as one of the disciplines, more promising companies in the biomedical field, to achieve each of the advances in need of an integration multidisciplinary different specialties such as cell biology, hematology, immunology, biology molecular, tissue engineering, transplantology, clinical research and regenerative medicine (Colter et al, 2000).The stem cells (SC) are the natural units from which all cell types of the body (Alvarez et al, 2012) They can be indefinitely divided into suitable conditions and differentiate one or different1

  • The MSC represents a biomedicine area in permanent growth, in cell therapy and in hematological diseases and cancer

  • Mesenchymal Stem Cells (MSCS) presents differentiation mechanisms different from other kinds of stem cells, they are an interesting model for cell differentiation and plasticity

Read more

Summary

Introduction

Cell therapy and regenerative medicine have generated a great research boom thanks to new knowledge about stem cells and their potential outlining them as one of the disciplines, more promising companies in the biomedical field, to achieve each of the advances in need of an integration multidisciplinary different specialties such as cell biology, hematology, immunology, biology molecular, tissue engineering, transplantology, clinical research and regenerative medicine (Colter et al, 2000). Later studies demonstrated the ability proliferation of CFU-Fs, their ability to self-renew, and their potential to originate adipocytes, chondrocytes, and osteoblasts This ability to originate cells belonging to mesenchymal tissues suggested the existence of a stem cell present in the OM, which was called years later as MSC (Horwitz et al, 2005). MSCS has a low rate of growth in vivo but have high regeneration and differentiating capacity into various cell types, managing to replace cells that are lost due to disease or lesions in vitro and are characterized by their adherence and morphology of fibroblasts (Heil et al, 2004) As well, they generate acceleration in the processes of scarring due to the positive effects that they bring in each of the phases of the said process (inflammatory, proliferative, and remodeling) creating an increase in epithelial migration, angiogenesis, and cure rate (Hooper et al, 2012). Once MSCs are isolated by plastic adhesion and cultured in vitro, they can differentiate into different mesodermal lineages such as osteocytes, chondrocytes, adipocytes, myoblasts, and cardiomyocytes (Lane et al, 2005; Nakahara et al, 1991; Zuk et al, 2002; Gálvez et al, 2011), or they can differentiate into endodermal cells like hepatocytes, pancreatic cells and ectodermal cells like astrocytes and neurons (Trounson and McDonald, 2015; Bieback and Brinkmann, 2010; Zomer et al, 2015)

MSCS from Bone Marrow
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.