Abstract
At the present time, there are major concerns regarding global warming and the possible catastrophic influence of greenhouse gases on climate change has spurred the research community to investigate and develop new gas-sensing methods and devices for remote and continuous sensing. Furthermore, there are a myriad of workplaces, such as petrochemical and pharmacological industries, where reliable remote gas tests are needed so that operatives have a safe working environment. The authors have concentrated their efforts on optical fibre sensing of gases, as we became aware of their increasing range of applications. Optical fibre gas sensors are capable of remote sensing, working in various environments, and have the potential to outperform conventional metal oxide semiconductor (MOS) gas sensors. Researchers are studying a number of configurations and mechanisms to detect specific gases and ways to enhance their performances. Evidence is growing that optical fibre gas sensors are superior in a number of ways, and are likely to replace MOS gas sensors in some application areas. All sensors use a transducer to produce chemical selectivity by means of an overlay coating material that yields a binding reaction. A number of different structural designs have been, and are, under investigation. Examples include tilted Bragg gratings and long period gratings embedded in optical fibres, as well as surface plasmon resonance and intra-cavity absorption. The authors believe that a review of optical fibre gas sensing is now timely and appropriate, as it will assist current researchers and encourage research into new photonic methods and techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.