Abstract
In 1963, G. A. Bird published a research note on his investigation of a rigid sphere gas reaching translational equilibrium using a Monte Carlo type method. Since then, the method has been developed into a primary workhorse to computationally solve the Boltzmann kinetic equation. As it is increasingly applied to challenging problems in the real world, verification studies of the method have become a critical issue. In this paper, we review previous studies on this challenging subject and present a perspective on a convergence analysis of the direct simulation Monte Carlo (DSMC) method and solution verification. During this process, a verification method based on the physical laws of conservation is studied in depth. In particular, a convergence history plot on all three types of computational errors—decomposition, statistical, and round-off—is presented for two benchmark problems. Finally, future research topics to maximize the full potential of the DSMC method, pioneered by the late G. A. Bird, are suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.