Abstract
Electric vehicles (EVs) are critical to the transition to a low-carbon transportation system. The successful adoption of EVs heavily depends on energy consumption models that can accurately and reliably estimate electricity consumption. This paper reviews the state-of-the-art of EV energy consumption models, aiming to provide guidance for future development of EV applications. We summarize influential variables of EV energy consumption into four categories: vehicle component, vehicle dynamics, traffic and environment related factors. We classify and discuss EV energy consumption models in terms of modeling scale (microscopic vs. macroscopic) and methodology (data-driven vs. rule-based). Our review shows trends of increasing macroscopic models that can be used to estimate trip-level EV energy consumption and increasing data-driven models that utilized machine learning technologies to estimate EV energy consumption based on large volume real-world data. We identify research gaps for EV energy consumption models, including the development of energy estimation models for modes other than personal vehicles (e.g., electric buses, electric trucks, and electric non-road vehicles); the development of energy estimation models that are suitable for applications related to vehicle-to-grid integration; and the development of multi-scale energy estimation models as a holistic modeling approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.