Abstract
The physical, hydrological, and physico-chemical properties of horticultural substrates are influenced by particle shape and size. Sieve analysis has been the predominate method used to characterize the particle size distribution of horticultural substrates. However, the literature shows a diversity of techniques and procedures. The effects of agitation time and sample size on particle size distributions of soilless substrates were evaluated for several measures of sieve analysis, including sieve rate (a calculation of the percentage of material passed for each unit time of agitation), distribution median, sd, mass relative span, skewness, and kurtosis. To obtain the standard sieve rate (0.1%/min), pine bark, peat, perlite, and coir required agitation times of 4 minutes and 47 seconds, 7 minutes and 18 seconds, 10 minutes, and 11 minutes, respectively. However, there was concern that unwanted particle breakdown may occur during the particle size analysis of some materials. Therefore, a sieve rate (0.15%/min) for more friable materials was also determined. As a result, the endpoint of sieving was reached sooner for pine bark, peat, perlite, and coir, at 3 minutes and 10 seconds, 4 minutes and 42 seconds, 5 minutes and 14 seconds, and 6 minutes and 24 seconds, respectively. Increasing agitation time resulted in decreased distribution median, sd, and skewness for all materials. Sample sizes half and twice the volume of the recommended initial volume sieved did not change particle size distributions. For more precise characterization of particle size distributions when characterizing substrate components, agitation times and sample sizes should be specified for each material or collectively for all materials to ensure consistency and allow comparisons between results.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.