Abstract

Effective probabilistic modeling approaches have been developed to find motifs of biological function in DNA sequences. However, the problem of automated model choice remains largely open and becomes more essential as the number of sequences to be analyzed is constantly increasing. Here we propose a reversible jump Markov chain Monte Carlo algorithm for estimating both parameters and model dimension of a Bayesian hidden semi-Markov model dedicated to bacterial promoter motif discovery. Bacterial promoters are complex motifs composed of two boxes separated by a spacer of variable but constrained length and occurring close to the protein translation start site. The algorithm allows simultaneous estimations of the width of the boxes, of the support size of the spacer length distribution, and of the order of the Markovian model used for the "background" nucleotide composition. The application of this method on three sequence sets points out the good behavior of the algorithm and the biological relevance of the estimated promoter motifs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.