Abstract

The chemical biology of reactive sulfur species, including hydropolysulfides, has been a subject undergoing intense study in recent years, but further understanding of their "intact" function in living cells has been limited owing to a lack of appropriate analytical tools. In order to overcome this limitation, we developed a new type of fluorescent probe that reversibly and selectively reacts to hydropolysulfides. The probe enables live-cell visualization and quantification of endogenous hydropolysulfides without interference from intrinsic thiol species such as glutathione. Additionally, real-time reversible monitoring of oxidative-stress-induced fluctuation of intrinsic hydropolysulfides has been achieved with a temporal resolution on the order of seconds, a result which has not yet been realized using conventional methods. These results reveal the probe's versatility as a new fluorescence imaging tool to understand the function of intracellular hydropolysulfides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call