Abstract

We introduce a continuous-time Markov chain describing dynamic allelic partitions which extends the branching process construction of the Pitman sampling formula in Pitman (2006) and the birth-and-death process with immigration studied in Karlin and McGregor (1967), in turn related to the celebrated Ewens sampling formula. A biological basis for the scheme is provided in terms of a population of individuals grouped into families, that evolves according to a sequence of births, deaths and immigrations. We investigate the asymptotic behaviour of the chain and show that, as opposed to the birth-and-death process with immigration, this construction maintains in the temporal limit the mutual dependence among the multiplicities. When the death rate exceeds the birth rate, the system is shown to have reversible distribution identified as a mixture of Pitman sampling formulae, with negative binomial mixing distribution on the population size. The population therefore converges to a stationary random configuration, characterised by a finite number of families and individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.