Abstract

The inverse Faraday effect is a magneto‐optical process allowing the magnetization of matter by an optical excitation carrying a non‐zero spin. In particular, a right circular polarization generates a magnetization in the direction of light propagation and a left circular polarization in the opposite direction to this propagation. Herein, it demonstrates that by manipulating the spin density of light, i.e., its polarization, in a plasmonic nanostructure, a reversed inverse Faraday effect is generated. A right circular polarization will generate a magnetization in the opposite direction of the light propagation, a left circular polarization in the direction of propagation. Also, it demonstrates that this new physical phenomenon is chiral, generating a strong magnetic field only for one helicity of the light, the opposite helicity producing this effect only for the mirror structure. This new optical concept opens the way to the generation of magnetic fields with unpolarized light, finding application in the ultrafast manipulation of magnetic domains and processes, such as spin precession, spin currents, and waves, magnetic skyrmion or magnetic circular dichroism, with direct applications in data storage and processing technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.