Abstract

[Au25(PPh3)10(SC2H4Ph)5Cl2]2+ (Au25) supported on TiO2 (P25) exhibited distinct photocatalytic behaviors in the oxidation of amines using visible or ultraviolet light. The activity under visible light (455 nm) was superior to that under ultraviolet light. To gain insight into the origin of this difference, we investigated the photoreaction pathways of Au25 isolated in the gas phase upon irradiation with a pulsed laser with wavelengths of 455, 193, and 154 nm. High-resolution mass spectrometry revealed photon energy-dependent pathways for Au25: dissociation of the PPh3 ligands and PPh3AuCl units at 455 nm, dissociation into small [AunSm]+ ions (n = 3-20; m = 0-4) at 193 nm, and ionization affording the triply charged state at 154 nm. These results were substantiated by density functional theory simulations. On the basis of these results, we proposed that the inferior photocatalytic activity of Au25/P25 under ultraviolet light is mainly due to the poor photostability of Au25.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.