Abstract
Bacteria-mediated degradation of toxins has been reported as a practical technique for the innocuous removal of toxic organic compounds from water. Specifically, immobilized and pre-acclimatized Pseudomonas putida has been shown to clear low levels of contaminants (less than 2000 mg/L) from wastewater, wherein the bacteria consumes toxic aromatic compounds as the only source of carbon and energy. Here we report the preparation of a high-capacity composite adsorbent as an immobilization matrix for pre-acclimatized P. putida that is capable of complete degradation of 5000 mg/L of phenol within 80 hours. The composite adsorbent, a n-Butyl acrylate (BA)-resin evenly coated on polyester fiber (PF), can quickly reduce the phenol concentration to a level that is suitable for the immobilized bacteria to start the biodegradation process. Furthermore, the composite adsorbent (PF-BA) is regenerated during the biodegradation process without any additional manipulations, therefore it is reusable. As a whole, we provide a general strategy for more efficient biodegradation for phenol, which can be generalized to other water-soluble toxic organics removal for waste water treatment.
Highlights
Bacteria-mediated degradation of toxins has been reported as a practical technique for the innocuous removal of toxic organic compounds from water
The composite adsorbent, a n-Butyl acrylate (BA)-resin evenly coated on polyester fiber (PF), can quickly reduce the phenol concentration to a level that is suitable for the immobilized bacteria to start the biodegradation process
Since the resin beads were prepared via traditional suspension polymerization method, they were too smooth and sticky to be used as the matrix for bacteria immobilization
Summary
Bacteria-mediated degradation of toxins has been reported as a practical technique for the innocuous removal of toxic organic compounds from water. We report the preparation of a high-capacity composite adsorbent as an immobilization matrix for pre-acclimatized P. putida that is capable of complete degradation of 5000 mg/L of phenol within 80 hours. The composite adsorbent, a n-Butyl acrylate (BA)-resin evenly coated on polyester fiber (PF), can quickly reduce the phenol concentration to a level that is suitable for the immobilized bacteria to start the biodegradation process. Since the resin beads were prepared via traditional suspension polymerization method, they were too smooth and sticky to be used as the matrix for bacteria immobilization To circumvent this problem, we used commercial polyester fiber (PF) flakes, which have porous reticular structure and hydrophilic surface, as a substrate for the BA-resin. Our results indicate that the one-step adsorption-release-biodegradation synergetic process based on PFBA-immobilized P. putida is much more efficient and convenient than the traditional multi-step method
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.