Abstract

Rapid and specific quantitation of a variety of proteins over a wide concentration range is highly desirable for biosensing at the point-of-care, in clinical laboratories, and in research settings. Our recently developed electrochemical proximity assay (ECPA) is a target-flexible, DNA-directed, direct-readout protein quantitation method with detection limits in the low femtomolar range, making it particularly amenable to point-of-care detection. However, consistent quantitation in more complex matrices is required at the point-of-care, and improvements in measurement speed are needed for clinical and research settings. Here, we address these concerns with a reusable ECPA, where a gentle regeneration of the surface DNA monolayer (used to capture the proximity complex) is achieved enzymatically through a novel combination of molecular biology and electrochemistry. Strategically placed uracils in the DNA sequence trigger selective cleavage of the backbone, releasing the assembled proximity complex. This allows repeated protein quantitation by square-wave voltammetry (SWV)—as quickly as 3 min between runs. The process can be repeated up to 19 times on a single electrode without loss of assay sensitivity, and currents are shown to be highly repeatable with similar calibrations using seven different electrodes. The utility of reusable ECPA is demonstrated through two important applications in complex matrices: (1) direct, quantitative monitoring of hormone secretion in real time from as few as five murine pancreatic islets and (2) standard addition experiments in unspiked serum for direct quantitation of insulin at clinically relevant levels. Results from both applications distinguish ECPA as an exceptional tool in protein quantitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.