Abstract

Objective To evaluate the effectiveness of a machine learning based on computed tomography (CT) radiomics to distinguish nontuberculous mycobacterial pulmonary disease (NTM-PD) from pulmonary tuberculosis (PTB). Methods In this retrospective analysis, medical records of 99 individuals afflicted with NTM-PD and 285 individuals with PTB in Zhejiang Chinese and Western Medicine Integrated Hospital were examined. Random numbers generated by a computer were utilized to stratify the study cohort, with 80% designated as the training cohort and 20% as the validation cohort. A total of 2153 radiomics features were extracted using Python (Pyradiomics package) to analyse the CT characteristics of the large disease areas. The identification of significant factors was conducted through the least absolute shrinkage and selection operator (LASSO) regression. The following four supervised learning classifier models were developed: random forest (RF), support vector machine (SVM), logistic regression (LR), and extreme gradient boosting (XGBoost). For assessment and comparison of the predictive performance among these models, receiver-operating characteristic (ROC) curves and the areas under the ROC curves (AUCs) were employed. Results The Student’s t-test, Levene test, and LASSO algorithm collectively selected 23 optimal features. ROC analysis was then conducted, with the respective AUC values of the XGBoost, LR, SVM, and RF models recorded to be 1, 0.9044, 0.8868, and 0.7982 in the training cohort. In the validation cohort, the respective AUC values of the XGBoost, LR, SVM, and RF models were 0.8358, 0.8085, 0.87739, and 0.7759. The DeLong test results noted the lack of remarkable variation across the models. Conclusion The CT radiomics features can help distinguish between NTM-PD and PTB. Among the four classifiers, SVM showed a stable performance in effectively identifying these two diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.