Abstract

BackgroundThe mutation in KRAS exon 2 is a validated biomarker of resistance to anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer (mCRC). Several reports have confirmed associations of other RAS mutations with resistance to anti-EGFR therapy. However, the impact of BRAF and PIK3CA mutations on the efficacy of anti-EGFR therapy remains controversial. Little is known about the frequencies and clinicopathological features of these mutations, as well as the therapeutic effects of anti-EGFR therapy in mCRC patients with these mutations, especially in the Asian population.MethodsIn this retrospective observational study, frequencies and clinicopathological features of KRAS, NRAS, BRAF and PIK3CA mutations were evaluated in patients with mCRC. Among patients treated with anti-EGFR therapy, objective response, progression-free survival (PFS), and overall survival (OS) were evaluated according to gene status.ResultsAmong 264 patients, mutations in KRAS exon 2, KRAS exons 3 or 4, NRAS, BRAF and PIK3CA were detected in 34.1%, 3.8%, 4.2%, 5.4% and 6.4%, respectively. Thus, a total of 12.1% of patients without KRAS exon 2 mutations had other RAS mutations. Primary rectal tumors tended to be more frequently observed in RAS mutant tumors. BRAF mutations were more frequently observed with right-sided colon, poorly differentiated or mucinous adenocarcinoma, and peritoneal metastasis. Among the 66 patients with KRAS exon 2 wild-type tumors treated with anti-EGFR agents, PFS (5.8 vs. 2.2 months) and OS (17.7 vs. 5.2 months) were significantly better in patients with all wild-type tumors (n = 56) than in those with any of the mutations (n = 10). The response rate also tended to be better with all wild-type tumors (26.8 vs. 0%).ConclusionOther RAS and BRAF mutations were observed in KRAS exon 2 wild-type tumors, which were associated with some clinicopathological features and resistance to anti-EGFR therapy in our patient cohort.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1276-z) contains supplementary material, which is available to authorized users.

Highlights

  • The mutation in KRAS exon 2 is a validated biomarker of resistance to anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer

  • Several reports have shown that other KRAS and NRAS mutations occur in ~20% of metastatic colorectal cancer (mCRC) patients with KRAS exon 2 wild-type tumors, which are associated with resistance to anti-EGFR therapy for mCRC [12,13,14,15,16,17,18]

  • progression-free survival (PFS) and overall survival (OS) rates were estimated using the Kaplan–Meier method, and differences among the groups according to KRAS, NRAS, BRAF and PIK3CA gene status were identified by univariate and multivariate analyses using Cox proportional hazards models and presented as hazard ratios (HRs) with 95% confidence intervals (CIs)

Read more

Summary

Introduction

The mutation in KRAS exon 2 is a validated biomarker of resistance to anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer (mCRC). Mutations in KRAS exon 2 occur in ~35% of all metastatic colorectal cancers (mCRCs) [2,3], and constitutively activate the mitogen-activated protein kinase (MAPK) pathway [4,5] These mutations are validated biomarkers for resistance to anti-epidermal growth factor receptor (EGFR) therapy in patients with mCRC [6,7,8,9,10,11]. Several reports have shown that other KRAS (exons 3 or 4) and NRAS mutations (exons 2– 4) occur in ~20% of mCRC patients with KRAS exon 2 wild-type tumors, which are associated with resistance to anti-EGFR therapy for mCRC [12,13,14,15,16,17,18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call