Abstract

Simple SummaryOvarian cancer (EOC) has a very poor prognosis, with a 5-year survival rate of just 43%. One of the biggest challenges is the resistance to standard chemotherapeutics. Nutrition modification is a potential adjunct that may be suitable to support cancer therapies through epigenetic modifications of DNA and biochemical pathways associated with drug response. It was retrospectively hypothesised that carrying a methylenetetrahydrofolate reductase (MTHFR) gene polymorphism may affect chemo response in EOC, and that nutrient status may further influence response to standard platinum therapy. This small pilot study of twenty-five participants provided a novel foundation for identifying that dietary intake of vitamins B12, B6 and zinc may impact platinum-drug response in EOC dependent on MTHFR genotype. Further large-scale investigations are required to verify the findings of this study.Ovarian cancer has the lowest survival rate in gynaecologic malignancies with a 5-year survival rate of 43%. Platinum resistance is one of the main drivers of ovarian cancer mortality, of which aberrant methylation has been cited as a significant contributor. Understanding the essential role of the methylenetetrahydrofolate reductase enzyme (MTHFR) on DNA synthesis and repair, and how nutrient status can vastly affect its performance, led to the investigation of MTHFR status and dietary influence on platinum response in epithelial ovarian cancer (EOC) patients. Twenty-five adult female patients who completed first-line platinum-based chemotherapy for primary ovarian cancer were selected from Icon Cancer Centres in Australia. Participants were grouped based on platinum response. A full medical and family history, food frequency questionnaire and single blood test were completed, testing for MTHFR polymorphisms, serum folate, serum and active B12 and homocysteine levels. Nineteen of twenty-five participants had an MTHFR polymorphism. Of those, 20% were compound heterozygous, 12% were heterozygous C677T (CT), 4% homozygous C677T, 12% homozygous A1298C and 28% were heterozygous A1298C (AC). Statistically significant associations were found between dietary zinc (p = 0.0086; 0.0030; 0.0189) and B12 intakes in CT genotypes (p = 0.0157; 0.0030; 0.0068) indicating that zinc or vitamin B12 intakes below RDI were associated with this genotype. There were strong associations of vitamin B6 intakes in AC genotypes (p = 0.0597; 0.0547; 0.0610), and dietary folate in compound heterozygotes with sensitive and partially sensitive disease (p = 0.0627; 0.0510). There were also significant associations between serum folate (p = 0.0478) and dietary B12 (p = 0.0350) intakes above RDI and platinum sensitivity in wild-types as well as strong associations with homocysteine levels (p = 0.0886) and zinc intake (p = 0.0514). Associations with dietary B12 (p = 0.0514) and zinc intakes (p = 0.0731) were also strong in resistant wild types. Results indicate that dietary zinc, B12 and B6 intakes may be associated with platinum sensitivity dependent on MTHFR genotype. These results require further research to clarify the dosages necessary to elicit a response; however, they provide a novel foundation for acknowledging the role of diet on treatment response in EOC.

Highlights

  • Epithelial ovarian cancer (EOC) is a highly heterogenous disease with its subtypes reported to share very few molecular similarities [1]

  • There are no recommended changes in clinical management of patients found with an methylenetetrahydrofolate reductase enzyme (MTHFR) gene variant, in this study we aim to assess whether there may be any association with platinum response, dietary intakes of methylation cycle substrates zinc, B6, B12 and folate and MTHFR polymorphisms [34]

  • The current study presents the first evidence, to the best of our knowledge, that improved response to platinum therapy in MTHFR wild types may be associated with dietary B12 intakes, and to a lesser extent, dietary zinc

Read more

Summary

Introduction

Epithelial ovarian cancer (EOC) is a highly heterogenous disease with its subtypes reported to share very few molecular similarities [1]. It is considered the most lethal gynaecological malignancy, representing the eighth most common cause of all types of cancer deaths in women worldwide [2]. A multitude of pathways and processes have been identified as contributing to the development of platinum resistance in EOC, including reduced drug influx, increased drug efflux and competent DNA repair pathways and, most recently, aberrant methylation [7,8,9]. The aim of this study was to investigate the prevalence of gene polymorphisms in a key methylation pathway, and dietary influence on drug response in ovarian cancer patients

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call