Abstract

AbstractThe unique t(15; 17) of acute promyelocytic leukemia (APL) fuses the PML gene with the retinoic acid receptor α (RARα) gene. Although retinoic acid (RA) inhibits cell growth and induces differentiation in human APL cells, resistance to RA develops both in vitro and in patients. We have developed RA-resistant subclones of the human APL cell line, NB4, whose nuclear extracts display altered RA binding. In the RA-resistant subclone, R4, we find an absence of ligand binding of PML-RARα associated with a point mutation changing a leucine to proline in the ligand-binding domain of the fusion PML-RARα protein. In contrast to mutations in RARα found in retinoid-resistant HL60 cells, in this NB4 subclone, the coexpressed RARα remains wild-type. In vitro expression of a cloned PML-RARα with the observed mutation in R4 confirms that this amino acid change causes the loss of ligand binding, but the mutant PML-RARα protein retains the ability to heterodimerize with RXRα and thus to bind to retinoid response elements (RAREs). This leads to a dominant negative block of transcription from RAREs that is dose-dependent and not relieved by RA. An unrearranged RARα engineered with this mutation also lost ligand binding and inhibited transcription in a dominant negative manner. We then found that the mutant PML-RARα selectively alters regulation of gene expression in the R4 cell line. R4 cells have lost retinoid-regulation of RXRα and RARβ and the RA-induced loss of PML-RARα protein seen in NB4 cells, but retain retinoid-induction of CD18 and CD38. Thus, the R4 cell line provides data supporting the presence of an RARα-mediated pathway that is independent from gene expression induced or repressed by PML-RARα. The high level of retinoid resistance in vitro and in vivo of cells from some relapsed APL patients suggests similar molecular changes may occur clinically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call