Abstract

Dendritic localization and hence local mRNA translation contributes to synaptic plasticity in neurons. Staufen2 (Stau2) is a well-known neuronal double-stranded RNA-binding protein (dsRBP) that has been implicated in dendritic mRNA localization. The specificity of Stau2 binding to its target mRNAs remains elusive. Using individual-nucleotide resolution CLIP (iCLIP), we identified significantly enriched Stau2 binding to the 3'-UTRs of 356 transcripts. In 28 (7.9%) of those, binding occurred to a retained intron in their 3'-UTR The strongest bound 3'-UTR intron was present in the longest isoform of Calmodulin 3 (Calm3L ) mRNA Calm3L 3'-UTR contains six Stau2 crosslink clusters, four of which are in this retained 3'-UTR intron. The Calm3L mRNA localized to neuronal dendrites, while lack of the 3'-UTR intron impaired its dendritic localization. Importantly, Stau2 mediates this dendritic localization via the 3'-UTR intron, without affecting its stability. Also, NMDA-mediated synaptic activity specifically promoted the dendritic mRNA localization of the Calm3L isoform, while inhibition of synaptic activity reduced it substantially. Together, our results identify the retained intron as a critical element in recruiting Stau2, which then allows for the localization of Calm3L mRNA to distal dendrites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.