Abstract

A 56-year-old postmenopausal woman with out-of-hospital cardiac arrest caused by acute myocardial infraction was successfully resuscitated by intensive treatments and recovered without any neurological disability. She was diagnosed as having familial hypercholesterolemia (FH) based on a markedly elevated low-density lipoprotein cholesterol (LDL-C) level and family history of premature coronary artery disease. Genetic testing in her family members showed that a variant of the proprotein convertase subtilisin/kexin type 9 ( PCSK9 ) gene (c.2004C>A, p.S668R), which had been previously reported as having uncertain significance, was associated with FH, indicating that the variant is a potential candidate for the FH phenotype. Next-generation sequencing analysis for the proband also showed that there was a heterozygous mutation of the ATP-binding cassette sub-family G member 5 ( ABCG5 ) gene (c.1166G>A, R389H), which has been reported to increase LDL-C level and the risk of cardiovascular disease. She was also diagnosed as having type 1 CD36 deficiency based on a lack of myocardial uptake of 123 I-labeled 15-(p-iodophenyl)-3-R,S-methyl-pentadecanoic acid in scintigraphy and the absence of CD36 antigen in both monocytes and platelets in flow cytometry. She had a homozygous mutation of the CD36 gene (c.1126-5_1127delTTTAGAT), which occurs in a canonical splice site (acceptor) and is predicted to disrupt or distort the normal gene product. To our knowledge, this is the first report of a heterozygous FH phenotype caused by possibly oligogenic variants of the PCSK9 and ABCG5 genes complicated with type I CD36 deficiency caused by a novel homozygous mutation. Both FH phenotype and CD36 deficiency might have caused extensive atherosclerosis, leading to acute myocardial infarction in the present case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call