Abstract

This study developed a new photoelectrochemical (PEC) sensor for the detection of the hydrazine (N2H4, HZ) based on a donor-π-bridge-acceptor (D-π-A) configuration organic photoactive dye (Dye-HZ). The dye was covalently immobilized on an FTO/TiO2 (FTO: fluorine-doped tin oxide) substrate, resulting in a photoanode FTO/TiO2/Dye-HZ that exhibits a specific PEC response to N2H4. Hydrazine reacts with the acetyl group in the Dye-HZ molecule, leading to its removal and the formation of a hydroxy group. The hydroxy group dissociates a hydrogen ion, forming a phenoxide anion with strong electron-donating characteristics. As a result, the dye molecule exhibits a strong intramolecular charge transfer effect, significantly enhancing absorbance and photoelectric response under visible light irradiation, leading to a remarkable increase in photocurrent and enabling highly sensitive detection of hydrazine. Furthermore, the PEC sensor demonstrates excellent selectivity and can be applied for the detection of hydrazine in real water samples. This study presents an innovative PEC sensing approach for hydrazine based on responsive photoactive molecules, providing new insights for PEC detection of other environmental pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call