Abstract

Due to the high mechanical strength of the metals used in implant manufacture, which makes them difficult to work with using other machining techniques, electrical discharge machining (EDM) is frequently employed in the production of implants. In this study, the effect of powder ratio and other EDM parameters used in the machining of CoCrMo alloy, which used in implant production widely, with powder-mixed EDM on the surface roughness of the machined part was investigated through the response surface methodology. AISI 316L stainless steel was chosen as the electrode material, and Ti6V4Al was chosen as the additive powder, taking into account their biocompatibility properties. Using a Taguchi L16 array, an experimental design was created by selecting 4 levels for each parameter of additive ratio, discharge current, pulse on time (Ton), and pulse off time (Toff). The response surface method was used, along with the experimental data, to estimate how the parameters affected the arithmetic average roughness (Ra) and mean roughness depth (Rz).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call