Abstract

Commensal microbiota has been shown to play an important role in local infections. However, the correlation between host respiratory microbiota and Mycoplasma gallisepticum (MG) infection is not well characterized. Here, the results of 16S rRNA sequencing showed that MG infection correlated with alteration in respiratory microbiota of chickens characterized by decreased richness and diversity. To explore whether respiratory microbiota contributed to MG infection, an antibiotics cocktail was used to deplete respiratory microbiota. It has been found that depletion of respiratory Gram-positive and Gram-negative bacteria promoted MG infection, as reflected in the form of increased MG colonization, pro-inflammatory cytokines and proteins expression, and severe lung damage compared to the control group. Importantly, depletion of Gram-negative bacteria in respiratory tract mitigated MG infection, which indicated that certain Gram-negative bacteria may promote MG infection. By reconstitution of individual cultivable respiratory tract bacteria in antibiotic-treated chickens, a respiratory commensal microbe Serratia marcescens was identified to facilitate MG infection. We further found that Serratia marcescens may promote MG infection by downregulating Mucin 2 (MUC2) and tight junction related gene mRNA expression levels in trachea and lung tissues. Together, our data demonstrated that MG infection induced disturbed respiratory microbiota and the specific respiratory commensal bacterium Serratia marcescens could promote MG infection, and thus expand our understanding of the pathogenesis of MG infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call