Abstract
Profitable but risky semiconductor testing market has led companies in the industry to carefully seek to maximize their profits by developing a proper resource portfolio plan for simultaneously deploying resources and selecting the most profitable orders. Various important factors, such as resource investment alternatives, trade-offs between the price and speed of equipment and capital time value, further increase the complexity of the simultaneous resource portfolio problem. This study develops a simultaneous resource portfolio decision model as a non-linear integer programming, and proposes a genetic algorithm to solve it efficiently. The proposed method is employed in the context of semiconductor testing industry to support decisions regarding equipment investment alternatives (including new equipment procurement, rent and transfer by outsourcing, and phasing outing) for simultaneous resources (such as testers and handlers) and task allocation. Experiments have showed that our approach, in contrast to an optimal solution tool, obtains a near-optimal solution in a relatively short computing time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.