Abstract

Quantum Convolutional Neural Network (QCNN) has achieved significant success in solving various complex problems, such as quantum many-body physics and image recognition. In comparison to the classical Convolutional Neural Network (CNN) model, the QCNN model requires excellent numerical performance or efficient computational resources to showcase its potential quantum advantages, particularly in classical data processing tasks. In this paper, we propose a computationally resource-efficient QCNN model referred to as RE-QCNN. Specifically, through a comprehensive analysis of the complexity associated with the forward and backward propagation processes in the quantum convolutional layer, our results demonstrate a significant reduction in computational resources required for this layer compared to the classical CNN model. Furthermore, our model is numerically benchmarked on recognizing images from the MNIST and Fashion-MNIST datasets, achieving high accuracy in these multi-class classification tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.