Abstract

AbstractThe strength of cryptographic keys rely on the random number generators (RNGs) to produce random seed values. Unfortunately there are not many RNGs options suitable for Internet of Things (IoTs) scenario, due to limited processing resources and bulk quantity of IoT data that needs to be secured. In this article, we studied sawtooth map which is a chaotic map. However, when implemented on a computer, the sawtooth map results on a non‐chaotic orbit due to the finite precision of computation. This can be avoided if we use the sawtooth map as the local map in a coupled map lattice (CML) system. We explore such coupled map systems for randomness through entropy and statistical analysis. Based on the results, we propose a lightweight hybrid pseudo random number generator (PRNG) based on sawtooth based CML system and SPONGENT hashing. The proposed PRNG is thoroughly tested against statistical attacks, entropy analysis, key space analysis and compared with existing state of the art solutions. The results provide evidence that the proposed PRNG produces random numbers that could produce sufficiently strong cryptographic keys for resource constrained IoT devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call