Abstract

The future communication technologies like 6G are capable to provide higher mobility and better quality-of-service requirements to Internet of Things (IoT). To ensure mobility, the 6G technologies need more reliable and scalable solutions, which are capable to integrate large-scale heterogeneous IoT networks. In a heterogeneous environment, seamless mobility along with the demands of IP addresses requires a proxy mobile IPv6 (PMIPv6) protocol that provides cost-effective solutions in next-generation IoT networks. The PMIPv6 has been exploited for resource efficiency in IoT-enabled next-generation networks. In this article, we have proposed a demand-based resource-efficient location-aware PMIPv6 extension for seamless mobility in the next-generation IoT networks. The proposed approach efficiently utilizes the network resources using location information and received signal strength (RSS). This solution enhances the performance of the PMIPv6 protocol in terms of signaling cost, and load on network entities. Furthermore, mathematical models are derived in terms of signaling cost and load distribution. The proposed solution is compared with the existing RSS-based PMIPv6 extension protocols. The results show that the proposed scheme enhances the performance and is a resource-friendly for the next-generation large-scale IoT networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.