Abstract

Synthetic genetic systems share resources with the host, including machinery for transcription and translation. Phage RNA polymerases (RNAPs) decouple transcription from the host and generate high expression. However, they can exhibit toxicity and lack accessory proteins (σ factors and activators) that enable switching between different promoters and modulation of activity. Here, we show that T7 RNAP (883 amino acids) can be divided into four fragments that have to be co-expressed to function. The DNA-binding loop is encoded in a C-terminal 285-aa ‘σ fragment’, and fragments with different specificity can direct the remaining 601-aa ‘core fragment’ to different promoters. Using these parts, we have built a resource allocator that sets the core fragment concentration, which is then shared by multiple σ fragments. Adjusting the concentration of the core fragment sets the maximum transcriptional capacity available to a synthetic system. Further, positive and negative regulation is implemented using a 67-aa N-terminal ‘α fragment’ and a null (inactivated) σ fragment, respectively. The α fragment can be fused to recombinant proteins to make promoters responsive to their levels. These parts provide a toolbox to allocate transcriptional resources via different schemes, which we demonstrate by building a system which adjusts promoter activity to compensate for the difference in copy number of two plasmids.

Highlights

  • Cells must control the production of RNA polymerase (RNAP) and ribosomes to balance their biosynthetic cost with the needs of cell growth and maintenance (Warner, 1999)

  • RNAP and ribosome synthesis is under stringent regulatory control, both to coordinate their levels with respect to cellular and environmental cues for growth (Nierlich, 1968; Hayward et al, 1973; Iwakura & Ishihama, 1975; Bedwell & Nomura, 1986; Bremer & Dennis, 2008; Schaechter et al, 1958; Lempiainen & Shore, 2009; Gausing, 1977; Schneider et al, 2003) and to balance the expression of their components for proper assembly into functional machines (Warner, 1999; Ishihama, 1981; Nierhaus, 1991; Fatica & Tollervey, 2002)

  • Our first objective was to identify all of the places T7 RNAP could be split to yield two fragments that can be co-expressed to produce a functional protein

Read more

Summary

Introduction

Cells must control the production of RNA polymerase (RNAP) and ribosomes to balance their biosynthetic cost with the needs of cell growth and maintenance (Warner, 1999). RNAP and ribosome synthesis is under stringent regulatory control, both to coordinate their levels with respect to cellular and environmental cues for growth (Nierlich, 1968; Hayward et al, 1973; Iwakura & Ishihama, 1975; Bedwell & Nomura, 1986; Bremer & Dennis, 2008; Schaechter et al, 1958; Lempiainen & Shore, 2009; Gausing, 1977; Schneider et al, 2003) and to balance the expression of their components for proper assembly into functional machines (Warner, 1999; Ishihama, 1981; Nierhaus, 1991; Fatica & Tollervey, 2002) This sets a resource budget that must be shared in the transcription of approximately 4,000 genes and translation of ~106 nucleotides of mRNA in E. coli (Bremer & Dennis, 1996). The fluctuations in resources can lead to global changes in expression levels and promoter activities (Keren et al, 2013; De Vos et al, 2011)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call