Abstract
Measuring vibrations is essential to ensuring building structural safety and machine stability. Predictive maintenance is a central internet of things (IoT) application within the new industrial revolution, where sustainability and performance increase over time are going to be paramount. To reduce the footprint and cost of vibration sensors while improving their performance, new sensor concepts are needed. Here, double-layer graphene membranes are utilized with a suspended silicon proof demonstrating their operation as resonant vibration sensors that show outstanding performance for a given footprint and proof mass. The unveiled sensing effect is based on resonant transduction and has important implications for experimental studies involving thin nano and micro mechanical resonators that are excited by an external shaker.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.