Abstract

Implantable Medical Devices (IMDs) have been developing in ways to be lighter and lower-power systems. In the view of such developments, the battery recharging capacity to ensure the stable operation of the system is essential. Wireless power transfer (WPT) was proposed as a solution to recharge the battery without complex metallic contacts. However, due to limitations such as threshold voltage of power switches and minimal input power of the multi-stage structure (Rectifier + Regulator/DC-DC converter) of conventional voltage-mode (VM) WPT, there are drawbacks of an input power range above a certain threshold level and limitations due to strict regulations on the human body. These issues make the design of the IMD battery charger much harder and prevent IMDs from being a more viable option for people-in-need. This paper introduces distinguishing characteristics of resonant current-mode (RCM) WPT technology to overcome the aforementioned issues. It also describes the basic theory, conventional circuits of VM/RCM, comparisons, and major challenges of RCM. Finally, advanced and efficiency-enhancing techniques of the-state-of-art works among the RCM topologies will be discussed to follow up the trend of RCM WPT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call