Abstract

Purpose – This paper aims to provide detailed information on the dynamic model and closed‐loop control theory for a resonant accelerometer based on electrostatic stiffness, which is important for the design of this type of resonant accelerometer.Design/methodology/approach – After analysing the principles of the resonant accelerometer based on electrostatic stiffness, a dynamic model was built. According to the requirements of the closed‐loop control, the control equations based on phase‐locked technology were also built for the system. With the help of the averaging method, the system behaviour was analysed, and the equilibrium for the vibration amplitude was achieved.Findings – The theoretical analysis and simulation show that integral gain is critical to system stability. When it is larger than the critical point, the system stable time is shorter, but the frequency‐tracking process fluctuates; if it is smaller than the critical point, the system stable time is longer, and the frequency‐tracking proces...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.