Abstract

The charge transfer (CT) properties of photosensitizers largely determine the photovoltaic performances of dye sensitized solar cells (DSSCs). Thus, understanding the CT properties of photosensitizers is key to further improving the performances of DSSCs. We herein investigated the underlying relationship between the molecular structures and CT properties of the photosensitizers using resonance Raman (RR) spectroscopy and density functional theory (DFT) calculations. RR spectroscopy combined with DFT calculations showed that the presence of a triple bond (T-D1, T-D2, and T-D3) enhanced the degree of CT from the donor to the acceptor. In addition, the presence of electron donating groups (EDGs) on the donor (T-D2 and T-D3) further increased the CT properties of the donor. Moreover, DFT analysis based on the harmonic oscillator model of aromaticity revealed that the presence of a triple bond and an EDG increased the quinoidal character of the photosensitizer in the excited state. Finally, it was found that the degree of CT properties exhibited by each photosensitizer was in good agreement with the order of the DSSC performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.