Abstract

The resolvent operator approach of [1] is applied to solve a set-valued variational inclusion problem in ordered Hilbert spaces. The resolvent operator under consideration is called relaxed resolvent operator and we demonstrate some of its properties. To obtain the solution of a set-valued variational inclusion problem, an iterative algorithm is developed and weak-RRD set-valued mapping is used. The problem as well as main result of this paper are more general than many previous problems and results available in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.