Abstract

Bertrand's random-chord paradox purports to illustrate the inconsistency of the principle of indifference when applied to problems in which the number of possible cases is infinite. This paper shows that Bertrand's original problem is vaguely posed, but demonstrates that clearly stated variations lead to different, but theoretically and empirically self-consistent solutions. The resolution of the paradox lies in appreciating how different geometric entities, represented by uniformly distributed random variables, give rise to respectively different nonuniform distributions of random chords, and hence to different probabilities. The principle of indifference appears consistently applicable to infinite sets provided that problems can be formulated unambiguously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.