Abstract

This paper studies the linguistic truth value domain (AX) based on finite monotonous hedge algebra and then we extend lukasiewicz algebra on (0;1) to linguistic lukasiewicz algebra on linguistic truth value domain (AX), in an attempt to propose a general resolution for linguistic many-valued logic based on hedge moving rules and linguistic lukasiewicz algebra for linguistic reasoning. Its theorems of soundness and completeness associated with general resolution are also proved. This reflects the symbolic approach acts by direct reasoning on linguistic truth value domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.