Abstract

It is a challenge to obtain ABO3 perovskite oxides with favorable crystal phase and well-defined porous structure via existing approaches. Here, we design an effective and versatile strategy to construct mesoporous ABO3 perovskite oxides with functionalized nanocrystal frameworks and abundant oxygen vacancy sites via a resol-assisted cationic coordinative co-assembly approach. The as-prepared oxygen vacancy-rich mesoporous LaMnO3 as heterogeneous catalyst exhibits remarkable catalytic activity and stability for hydrogenation of furfural to furfuryl alcohol, including over 99 % conversion and 96 % selectivity. Combined with density functional theory calculation, the catalytic mechanism is elucidated, revealing that porous LaMnO3 nanocrystal framework is conducive to expose oxygen deficiency sites, which can facilitate the interaction between catalyst surface and catalytic substrate, leading to lower barrier in hydrogenation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.