Abstract
In this paper, we propose a method for predicting epileptic seizures using a pre-trained model utilizing supervised contrastive learning and a hybrid model combining residual networks (ResNet) and long short-term memory (LSTM). The proposed training approach encompasses three key phases: pre-processing, pre-training as a pretext task, and training as a downstream task. In the pre-processing phase, the data is transformed into a spectrogram image using short time Fourier transform (STFT), which extracts both time and frequency information. This step compensates for the inherent complexity and irregularity of electroencephalography (EEG) data, which often hampers effective data analysis. During the pre-training phase, augmented data is generated from the original dataset using techniques such as band-stop filtering and temporal cutout. Subsequently, a ResNet model is pre-trained alongside a supervised contrastive loss model, learning the representation of the spectrogram image. In the training phase, a hybrid model is constructed by combining ResNet, initialized with weight values from the pre-trained model, and LSTM. This hybrid model extracts image features and time information to enhance prediction accuracy. The proposed method’s effectiveness is validated using datasets from CHB-MIT and Seoul National University Hospital (SNUH). The method’s generalization ability is confirmed through Leave-one-out cross-validation. From the experimental results measuring accuracy, sensitivity, and false positive rate (FPR), CHB-MIT was 91.90%, 89.64%, 0.058 and SNUH was 83.37%, 79.89%, and 0.131. The experimental results demonstrate that the proposed method outperforms the conventional methods.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.