Abstract

To improve localization and pose precision of visual-inertial simultaneous localization and mapping (viSLAM) in complex scenarios, it is necessary to tune the weights of the visual and inertial inputs during sensor fusion. To this end, we propose a resilient viSLAM algorithm based on covariance tuning. During back-end optimization of the viSLAM process, the unit-weight root-mean-square error (RMSE) of the visual reprojection and IMU preintegration in each optimization is computed to construct a covariance tuning function, producing a new covariance matrix. This is used to perform another round of nonlinear optimization, effectively improving pose and localization precision without closed-loop detection. In the validation experiment, our algorithm outperformed the OKVIS, R-VIO, and VINS-Mono open-source viSLAM frameworks in pose and localization precision on the EuRoc dataset, at all difficulty levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call