Abstract

We introduce a new framework for resilience, which is traditionally understood as the ability of a system to absorb disturbances and maintain its state, by proposing a shift from a state-based to a system functioning-based approach to resilience, which takes into account that several different coexisting stable states could fulfill the same functioning. As a consequence, not every regime shift, i.e., transition from one stable state to another, is associated with a lack or loss of resilience. We emphasize the importance of flexibility-the ability of a system to shift between different stable states while still maintaining system functioning. Furthermore, we provide a classification of system responses based on the phenomenological properties of possible disturbances, including the role of their timescales. Therefore, we discern fluctuations, shocks, press disturbances, and trends as possible disturbances. We distinguish between two types of mechanisms of resilience: (i) tolerance and flexibility, which are properties of the system, and (ii) adaptation and transformation, which are processes that alter the system's tolerance and flexibility. Furthermore, we discuss quantitative methods to investigate resilience in model systems based on approaches developed in dynamical systems theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call