Abstract

Previous work has focused on performing residue computations that are quantized within a dense ring of integers in the real domain. The aims of this paper are to provide an efficient algorithm for the approximation of real input signals, with arbitrarily small error, as elements of a quadratic number ring and to prove residual number system moduli restrictions for simplified multiplication within the ring. The new approximation scheme can be used for implementation of real-valued transforms and their multidimensional generalizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.