Abstract

Q-matrix validation is of increasing concern due to the significance and subjective tendency of Q-matrix construction in the modeling process. This research proposes a residual-based approach to empirically validate Q-matrix specification based on a combination of fit measures. The approach separates Q-matrix validation into four logical steps, including the test-level evaluation, possible distinction between attribute-level and item-level misspecifications, identification of the hit item, and fit information to aid in item adjustment. Through simulation studies and real-life examples, it is shown that the misspecified items can be detected as the hit item and adjusted sequentially when the misspecification occurs at the item level or at random. Adjustment can be based on the maximum reduction of the test-level measures. When adjustment of individual items tends to be useless, attribute-level misspecification is of concern. The approach can accommodate a variety of cognitive diagnosis models (CDMs) and be extended to cover other response formats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.