Abstract

A recent comprehensive investigation into residual stress distributions in narrow gap welds in pressure vessels and pipe components are presented in this paper, covering component wall thickness from 1” (25.4mm) to 10” (254mm), component radius to wall thickness ratio from 2 to 100, and linear welding heating input from low (300 J/mm) to high (18000 J/mm). By means of a residual stress decomposition technique, two key parameters that govern through-thickness residual stress distributions in terms of their membrane and bending content have been identified. One is component radius to wall thickness ratio (r/t) and the other is a characteristic heat input density (Q̂) having a unit of J/mm3. With these two parameters, a unified functional form for representing through-thickness residual stress profile in narrow gap welds is proposed for supporting fitness for service assessment, e.g., using f API 579-RP. Its validity is further confirmed by full-blown thermomechanical finite element residual stress analyses for a number of selected narrow gap weld cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call