Abstract

Diagnosing autism spectrum disorder (ASD) remains a challenge due to its complexity and insufficient evidence available for its diagnosis. Recent research in the field of psychiatry suggests that there are no clear causes for ASD, but a hypothesis is raised that abnormalities in the superior temporal sulcus (STS), which is connected to visual cortex regions, can serve as a critical indicator of ASD. Inspired by this hypothesis, this paper proposes a deep learning model with two parts to diagnose ASD by utilizing functional brain connectivity between STS and visual cortex. The first part is a residual attention network that selectively extracts the structural and temporal features from 4D brain images while maintaining dynamic connectivity between the two regions. The second part is a graph convolutional network that determines ASD from the graph with 39 nodes constructed by the residual attention network. Experiments with the fMRI data from 800 patients known as ABIDE (Autism Brain Imaging Data Exchange) and 10-fold cross-validation show that the proposed model outperforms the state-of-the-art methods by achieving 11.37%p improvement in the ASD classification. Additional analyses justify each part of the proposed model through an ablation study and various visualizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.