Abstract
Based on the study of damage mechanisms of generalized water blocking and related water-blocking removal methods, the drying agents for enhancing tight gas reservoir recovery were developed, and the basic properties, injection mode and drying effect of the drying agents were evaluated. The chemical effect, thermal effect, salt resistance, salt resistance formulas and delay mechanism of the drying agent systems for different types of tight reservoirs were investigated through lab experiment. The solubility and solubilization properties of supercritical carbon dioxide on drying agent systems were tested. The injection mode of dissolving drying agent in supercritical carbon dioxide was proposed. The mechanisms of supercritical carbon dioxide with water in micropores of formation matrix were analyzed. Micro-pore structures and seepage characteristics of reservoir before and after drying were compared. Based on the characterization in combination of NMR and laser etched pore structure model, drying effects of the drying agents on bound water of different occurrences were evaluated qualitatively and quantitatively. Lattice Boltzmann method was used to evaluate the influence of drying effect on gas micro-seepage ability. The influence of drying effect on productivity and production performance of gas well was analyzed by numerical simulation. The drying effect can greatly reduce water saturation of tight reservoir and improve the gas seepage capacity in near wellbore and fractures. This work can provide guidance for developing new measures in enhancing recovery of tight gas reservoirs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.